Today you will:

- Write functions representing stretches and shrinks
- Write functions representing combinations of transformations
- Practice using English to describe math processes and equations

Core vocabulary:

- Vertical Stretch (of a graph of a function) move the points of the function away from x-axis by a factor
- Vertical Shrink (of a graph of a function) move points of the function toward x-axis by a factor
- Horizontal Stretch move the points of the function away from the y-axis by a factor
- Horizontal Shrink move the points of the function toward y-axis by a factor

Vertical Stretches and Shrinks

- The graph of $y = a \cdot f(x)$ is a vertical
 - Stretch by a factor of a when a > 1
 - Shrink by a factor of a when 0 < a < 1

Example of a Vertical Stretch: $f(x) = 2x^2$ is a vertical stretch of $f(x) = x^2$ by a factor of 2

Example of a Vertical Shrink: $f(x) = \frac{1}{2}x^2$ is a vertical stretch of $f(x) = x^2$ by a factor of $\frac{1}{2}$

*** Notice with a vertical stretch/shrink we are multiplying all the y's deforming the graph up/down.

Horizontal Stretches and Shrinks

Horizontal stretches/shrinks are away from/toward the y-axis.

- The graph of y = f(ax) is a horizontal
 - Stretch (away from y-axis) by a factor of $\frac{1}{a}$ when 0 < a < 1
 - Shrink (toward the y-axis) by a factor of $\frac{1}{a}$ when a > 1

*** Notice with a horizontal stretch/shrink we are multiplying all the x's deforming the graph left/right.

y = f(x)	y = f(x)	y = f(x)	y = f(x)
y = 2f(x)	$y = \frac{f(x)}{2}$	y = f(2x)	$y = f(\frac{x}{2})$
vertical stretch;	vertical shrink;	horizontal shrink;	horizontal stretch;
y-values are doubled;	y -values are halved;	x -values are halved;	x -values are doubled;
points get farther away	points get closer	points get closer	points get farther away
from x-axis	to x -axis	to y -axis	from y-axis
vertical stretching/shrinking changes the y -values of points;		horizontal stretching/shrinking changes the x -values of points;	
transformations that affect the y -values are intuitive		transformations that affect the x -values are counter-intuitive	
Vertical/Horizontal Stretching/Shrinking usually changes the shape of a graph.			

Let f(x) = |x - 3| - 5. Write (a) a function *g* whose graph is a horizontal shrink of the graph of *f* by a factor of $\frac{1}{3}$, and (b) a function *h* whose graph is a vertical stretch of the graph of *f* by a factor of 2.

SOLUTION

a. A horizontal shrink by a factor of $\frac{1}{3}$ multiplies each input value by 3.

g(x) = f(3x)Multiply the input by 3.= |3x - 3| - 5Replace x with 3x in f(x).

The transformed function is g(x) = |3x - 3| - 5.

b. A vertical stretch by a factor of 2 multiplies each output value by 2.

 $h(x) = 2 \cdot f(x)$ Multiply the output by 2. $= 2 \cdot (|x - 3| - 5)$ Substitute |x - 3| - 5 for f(x).= 2|x - 3| - 10Distributive Property

The transformed function is h(x) = 2|x - 3| - 10.

Combinations of transformations:

When told to apply a series (group) of transformations to a function,

apply them one at a time in the stated order.

Let the graph of *g* be a vertical shrink by a factor of 0.25 followed by a translation 3 units up of the graph of f(x) = x. Write a rule for *g*.

SOLUTION

Step 1 First write a function *h* that represents the vertical shrink of *f*.

 $h(x) = 0.25 \bullet f(x)$ = 0.25x Multiply the output by 0.25. Substitute x for f(x).

Step 2 Then write a function *g* that represents the translation of *h*.

g(x) = h(x) + 3	Add 3 to the output.
= 0.25x + 3	Substitute 0.25x for $h(x)$.

The transformed function is g(x) = 0.25x + 3.

200

You design a computer game. Your revenue for *x* downloads is given by f(x) = 2x. Your profit is \$50 less than 90% of the revenue for *x* downloads. Describe how to transform the graph of *f* to model the profit. What is your profit for 100 downloads? SOLUTION

- **1. Understand the Problem** You are given a function that represents your revenue and a verbal statement that represents your profit. You are asked to find the profit for 100 downloads.
- **2. Make a Plan** Write a function *p* that represents your profit. Then use this function to find the profit for 100 downloads.
- 3. Solve the Problem

4. Look Back The vertical shrink decreases the slope, and the translation shifts the graph 50 units down. So, the graph of *p* is below and not as steep as the graph of *f*.

Vertical Stretches and Shrinks

- The graph of $y = a \cdot f(x)$ is a vertical
 - Stretch by a factor of a when a > 1
 - Shrink by a factor of a when 0 < a < 1

Horizontal Stretches and Shrinks

Horizontal stretches/shrinks are away from/toward the y-axis.

- The graph of y = f(ax) is a horizontal
 - Stretch (away from y-axis) by a factor of $\frac{1}{a}$ when 0 <

a < 1

• Shrink (toward the y-axis) by a factor of $\frac{1}{a}$ when a > 1